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ABSTRACT

A set of spanning line segments (SLS) is a subset of the edges of a finite polyhedron
in E® such that an arbitrary plane intersects the polyhedron if and only if the plane
intersects at least one of the line segments of the SLS. In this paper an algorithm is pre-
sented for computing an almost minimum set of spanning line segments for an arbitrary
polyhedron P. When the number of extreme vertices of P is odd, the computed SLS is
minimum; when the number of extreme vertices of P is even, the size of the computed
SLS is at most the minimum size plus one. The algorithm has linear-time complexity for
a convex polyhedron, hence is optimal in this case; its time complexity is ©(mlogm)
for an arbitrary polyhedron, where m is the number of vertices of the polyhedron.
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1. Introduction

Linear separability is an important problem in pattern recognition for classifi-
cation. ! The problem is to decide whether there is a hyperplane separating two
sets of points in E¢, d > 1. This problem has also been studied in computational
geometry. 2 In this paper we study an inseparable set of line segments, called a set
of spanning line segments, in E® associated with a polyhedron.

If a plane intersects a polyhedron in E3, then it intersects one of the edges of
the polyhedron. A set of spanning line segments (SLS) is a subset of the edges of a
polyhedron such that an arbitrary plane intersects the polyhedron if and only if the
plane intersects one of the line segments in the SLS. Testing for intersection between
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a plane and a polyhedron is a fundamental problem and has practical applications.
An efficient method based on the set of spanning line segments for testing whether
a box intersects a given plane is described in Ref. [3].

An SLS of a polyhedron is, in general, not unique. For instance, all edges of
a polyhedron form an SLS of the polyhedron, although an SLS of a smaller size
usually exists. Let CH(P) denote the convex hull of polyhedron P in E3. A vertex
A of P is called an extreme vertez if there is a supporting plane of CH(P) through
A such that A is the only point common to the supporting plane and CH(P). It
can be shown that, for a polyhedron P with n extreme vertices, the minimum size
of an SLS of P is (n + 1)/2 when n is odd, and n/2 or (n/2) + 1 when n is even.
Figure 1 shows an hour-glass shaped polyhedron with 20 edges. Its minimum SLS
has four line segments, shown in the dotted lines.

Fig. 1. A polyhedron of 20 edges has an SLS of 4 line segments.

We provide an efficient algorithm to compute an almost minimum SLS of an
arbitrary but finite polyhedron in E3. Let P be a polyhedron that has n extreme
vertices. When n is odd, the algorithm computes an SLS of (n+1)/2 line segments,
which is minimum. When n is even, the algorithm computes an SLS of n/2 or
(n/2) + 1 line segments; the SLS may not be minimum when it has (n/2) + 1 line
segments.

The algorithm works as follows. First, the convex hull of the polyhedron is
computed. Then two particular vertices of the convex hull are removed in each step
to give a new line segment that is added to a growing set that finally becomes an
SLS of the polyhedron. This step is repeated recursively until six or fewer vertices
of the convex hull are left, a case that can be resolved directly. The key lies in how
to choose the two vertices in each step; the choice must ensure that the set of line
segments formed at last is an SLS of the polyhedron.

The time complexity of the algorithm is linear for a convex polyhedron, hence
is optimal in this case. When the polyhedron is arbitrary, the convex hull needs to
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be found first, so the time complexity in this case is ©(mlogm), where m is the
number of vertices of the polyhedron. The algorithm uses linear space.

In the following, we will study the properties of SLS in section 2 and present
our algorithm in section 3.

2. Definition and Properties of SLS

Let P be a finite polyhedron in E2. We assume throughout that all the vertices
of CH(P) are the extreme vertices of P.
Definition 1. A set S of line segments is inseparable if an arbitrary plane either
intersects a line segment in S or has all the line segments in S on the same side of
the plane.
Definition 2. A set S of line segments is a set of spanning line segments (SLS) of
a polyhedron P if S satisfies the following three conditions:

(1) The endpoints of each line segment in S are extreme vertices of P.
(2) Each extreme vertex of P is an endpoint of some line segment in S.
(8) S is inseparable.

Let |S| denote the size of S. The next lemma follows from condition 2 above.
Lemma 1 Let P be a polyhedron that has n extreme vertices. Let S be an SLS of
P. Then |S| > [n/2]

Lemma 2 Let P be a polyhedron. A plane intersects P if and only if the plane
intersects CH(P).

The proof of Lemma 2 is straightforward and so is omitted. Lemma 2 implies

that a polyhedron can be replaced by its convex hull for computing an SLS of the
polyhedron.

Theorem 1 Let S be an SLS of a polyhedron P. A plane intersects P if and only
if the plane intersects a line segment of S.

Proof. Suppose that a plane intersects polyhedron P. Then, by Lemma 2,
it intersects CH(P). Therefore the plane either passes through a vertex of CH(P)
or separates the vertices of CH(P) into two groups. In the first case, by condition
2 in Definition 2, the plane intersects a member of S. In the second case, since
every vertex of CH(P) is covered by some line segment of S and because of the
inseparability of S, the plane must intersect a member of S.

Conversely, if a plane intersects a line segment of S, by condition 1 in Definition
2, it intersects CH(P). Hence, by Lemma 2, the plane intersects P. m

Let CH(S) denote the convex hull of a set S of line segments.

Lemma 3 Let R and S be two inseparable sets of line segments in E*. T =R|JS
is inseparable if and only if CH(R) (| CH(S) # 0.
Proof. If T is separable, since R and S are inseparable, there exists a plane

that separates R and S. So the CH(R) () CH(S) = 0. Hence, CH(R) (Y CH(S) # 0
implies that 7 is inseparable.
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Conversely, if CH(R) [ CH(S) = 0, there is a plane separating CH(R) and
CH(S). Therefore the plane separates the sets R and S, i.e., T is separable. Hence
CH(R)(NCH(S) #0 if T =RJS is inseparable. ]

Next we discuss the SLS of a polyhedron with five or six extreme vertices.
The discussion will not only reveal and exemplify some properties of SLS, but also
provide the foundation of our algorithm for computing an almost minimum SLS of
a general polyhedron.

Lemma 4 Let V be the set of vertices of a polyhedron. Let A and B be two distinct
extreme vertices of CH(V) such that the line segment (A, B) is not an edge of CH(V),
which is treated as a polyhedron. Then (A, B) intersects CH(V — {4, B}).

Proof. The proof is by contradiction. Suppose that the line segment (A, B)
does not intersect CH(V — {A, B}). We first show that the straight line through A
and B, denoted by AB, does not intersect CH(V — {4, B}) either. As (A, B) does
not intersect CH(V —{ A, B}), if the straight line AB intersects CH(V —{A, B}), the
intersection must occur on the straight line AB but outside the line segment (A, B).
But this implies that at least one of A and B is not an extreme vertex of CH(V). This
is a contradiction. Hence, the straight line AB does not intersect CH(V — {4, B}).
Consequently, there exist two distinct supporting planes of CH(V — {4, B}) that
pass through the line AB and sandwich CH(V—{ A, B}) between them, as illustrated
in Figure 2. So (A, B) is an edge of CH(V). But this contradicts our assumption.
Hence, (A, B) intersects CH(V — {A, B}). 0

7

Fig. 2. Two supporting planes of CH(V — {A, B}) pass through AB.

Lemma 5 For a convex polyhedron P with five vertices there exist two of the five
vertices whose connecting line segment is not an edge of P.

Proof. Suppose that all pairs of vertices of P form the edges of P. Then P has
e = (3) = 10 edges. On the other hand, by Euler’s formula, P has f =2—v+e=7
faces. Since each face has at least three sides, the number of edges of P is e >
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3 x 7/2=21/2 > 10. This is a contradiction. Hence, the connecting line segment
of some two vertices of P is not an edge. ]

Lemma 5 is reminiscent of the fact that the complete graph K5 is nonplanar.
Lemma 6 Let S be a set of line segments. Suppose CH(S') (YCH(S — S') # 0 for
any nonempty proper subset S' C S. Then S is inseparable.

Proof. If S is separable, then there is a plane separating S into two nonempty
subsets S’ and § — §'. It follows that CH(S') N\ CH(S — &') = 0, which is a
contradiction. ]
Theorem 2 A minimum SLS of a polyhedron with five extreme vertices has three
line segments.

Proof. Without loss of generality, assume that P is a convex polyhedron with
five extreme vertices. By Lemma 5, there exists a line segment linking two vertices
of P and not being an edge of CH(P). Denote this line segment by (A, B), as shown
in Figure 3. Choose any two line segments from the sides of the triangle formed by
the remaining three vertices, and denote them by (C, D) and (C, E). Then we claim
that § = {(4, B),(C, D), (C, E)} is an SLS of P. To see this, firstly, it is obvious
that the first two conditions of Definition 2 are satisfied by S. Secondly, by Lemma
4, (A, B) intersects CH({C, D, E}) = CH({(C, D), (C, E)}). Thus, by Lemma 6, S
is inseparable. Hence, S is an SLS of P. By Lemma 1, S is minimum. O

A

B

Fig. 3. A polyhedron with 5 extreme vertices has an SLS of 3 line segments.

Lemma 7 Let P be a convex polyhedron with n extreme vertices, n > 2. Suppose
that a vertez of P has degree n — 1. Then |S| > [(n + 1)/2] for any S that is an
SLS of P.

Proof. Let V denote the set of vertices of P. Then |V| = n. When n is odd,
the lemma is implied by Lemma 1, since [n/2] = [(n + 1)/2]. Now consider the
case where n is even. Let A be a vertex of P that has degree n—1. Let S be an SLS
of P. By condition 2 in Definition 2, since the degree of A is n — 1, S must contain
an edge of P that has A as one of its endpoints. Denote this edge by (A, B). Then
the vertex A or B must be the endpoint of some other line segment, denoted by
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(A4,C) or (B,C), in S; for otherwise, since (4, B) is an edge of P, (A, B) would be
separable from other members of S by a plane, contradicting that S is inseparable.
Now the remaining n — 3 vertices, i.e., V—{A, B, C}, need [(n—3)/2] line segments
to cover. Hence an SLS of P has at least [(n—3)/2]+2 = [(n+1)/2] line segments.
[}

Theorem 3 For a polyhedron P with siz extreme vertices, its minimum SLS con-
tains three or four line segments. Furthermore, a minimum SLS of P has four line
segments if and only if a vertex of CH(P) has degree 5.

Proof. Without loss of generality, assume that P is a convex polyhedron and
all of its six vertices are extreme. The maximum degree possible of a vertex of P is
5, and the minimum degree possible is 3. First consider the case where a vertex has
degree 5. According to Lemma 7, a minimum SLS of P has at least [(6+1)/2] =4
line segments. Now we construct an SLS of P with four line segments. First we
claim that P has a vertex of degree 3. Otherwise, suppose that all the vertices of P
have degree 4 or above. Suppose further that m vertices of P have degree 5, where
m > 1. Then the number of edges of P is e = [5m + 4 * (6 — m)]/2. Since each face
has at least 3 sides, the number of faces of P is f < 2e/3 = [5m + 4 x (6 — m)]/3.
On the other hand, by Euler’s formula, e — f = 4. It follows that

[5m + 4 (6 — m)]/2 — [5m + 4 % (6 — m)]/3 < 4.

The solution to this inequality is m < 0, which is a contradiction. Therefore P has a
vertex of degree 3. Denote this vertex by B, as shown in Figure 4. Let D and F be
two other vertices such that (B, D) and (B, E) are not edges of P. Then we claim
that the set S = {(B, D), (B, E),(4,C), (A, F)} is an SLS of P, where A,C, F' are
the remaining vertices. Since (B, D) is not an edge of P and the degree of B is 3,
D is in the extended cone with apex B and base AACF, and D and B on different
sides of AACF. Therefore, triangle ABDE and triangle AACF intersect. Hence,
by Lemma 6, S is inseparable.

In all the remaining cases the maximum degree possible of vertices of P is 4.
Let m be the number of the vertices that have degree 4. Then the number of edges
of Pis

e=[4m+3x(6—-m)]/2= (18 +m)/2.

Since e is an integer, m can only be 0, 2, 4, or 6. In these four cases, by Euler’s
formula, the number of edges and the number of faces of P are, respectively, (m = 0):
e=9,f=5(m=2:e=10,f=6;(m=4):e=11, f=T7;, (m =6): e =12,
f = 8. The configurations of polyhedra satisfying these four sets of conditions are
shown in Figure 5. It can be shown through an exhaustive enumeration that each
configuration is unique up to the corresponding set of conditions. By verifying the
conditions in Definition 2 and applying Lemma 6, it is easy to see that in each case
the 3 dotted line segments shown in the figure form an SLS of P. O
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(2) (b
Fig. 4.

For a polyhedron with three or four extreme vertices, an SLS with two or three
line segments, respectively, can easily be created. To sum up, for any polyhedron
with n extreme vertices, n < 6, a minimum SLS with [n/2] or [n/2] + 1 line
segments can be computed.

3. The Algorithm

Now we describe the procedure for computing an SLS of a polyhedron.

Procedure FIND-SLS:
Input: A polyhedron P with m > 3 vertices.
Output: A set S of spanning line segments of P.

begin
0. Compute the convex hull CH(P) of P by any standard algorithm;
1. V = set of vertices of CH(P); S = 0;
2. while(|V| > 6) do
begin
2.1. Find a subset V' of five vertices of V;
2.2. Find two vertices A and B of V' which do not form an edge of V';
23. § =S U{(4,B)};
24. V=V - {A4,B};
end
3. Find a minimum SLS 8; of V; /* |V| < 6 in this case. */
4. §=8JSs;
5. Return;

end

Remarks: The existence of the two vertices A and B selected in step 2.2 is ensured
by Lemma 5. The method for finding an SLS of V when 4 < |V| < 6 in step 3 is
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based on the proofs of Theorem 2 and Theorem 3. An SLS of V with three or four
vertices in general positions contains two or three line segments, respectively, and
can easily be computed.

The next lemma is straightforward.

Lemma 8 Let V be the set of the extreme vertices of a polyhedron. Let V' be a
nonempty subset of V. Then all vertices in V' are the extreme vertices of CH(V').

Theorem 4 Let P be an input polyhedron to FIND-SLS that has n extreme vertices.
Then the set S of line segments computed by FIND-SLS is an SLS of P. Further-
more, S is minimum when n is odd, and |S| may be greater than the minimum size
by one when n is even.

Proof. It is obvious that conditions 1 and 2 in Definition 2 are satisfied by the
set of line segments computed. Now we prove its inseparability by induction. First,
in step 3, the set of line segments computed for a subset V with |V| < 6 is an SLS
of V. When |V| > 6, let V' be the set of five vertices chosen in the first execution
of the while-loop. Let A, B € V' be two vertices such that (A, B) is not an edge of
CH(V'). By Lemma 8, CH(V') has five extreme vertices, so such vertices A and B
exist by Lemma 5.

Let Vi =V—{A, B}. Suppose that the set of line segments created subsequently
for the set V; is an SLS of V;. By the choice of A and B in the while-loop and
Lemma 4, the line segment (A4, B) intersects CH(V' — {4, B}), and it therefore also
intersects CH(V;) since V' — {4,B} C V;. By Lemma 3, the final set S, as the
union of {A, B} and an SLS of Vy, is also inseparable. Therefore S is an SLS of P.
Hence, by induction, the algorithm computes an SLS of P.

When n is odd, two vertices are removed from V in each run of the while-loop
until there are five vertices left. The set of these five vertices, by Theorem 2, has an
SLS containing three line segments. So the SLS computed for P has [(n—5)/2] +3
= [n/2] line segments, which is minimum, by Lemma 1. When n is even, two
vertices are removed from V each time in the while-loop until six vertices are left,
whose minimum SLS, by Theorem 3, has three or four line segments; in this case
the SLS computed for P has (n —6)/2+3 =n/2or (n—6)/2+4 =n/2+ 1 line
segments, respectively. It is minimum in the former case but may be minimum plus
one in the latter case. d

Theorem 5 The time complezity of the algorithm FIND-SLS is ©(mlogm) for an
arbitrary polyhedron P, where m is the number of vertices of P. It is linear-time if

P is convex.
Proof. The time spent on step 0 for finding the convex hull of P is ©(m logm),
and is dominant. When P is convex, the time on the remaining steps is clearly linear.
O

4. Summary

The algorithm FIND-SLS computes a minimum SLS when n is odd, where n
is the number of extreme vertices of the input polyhedron. When n is even, the
size of the computed SLS may be greater than the minimum size by one. For
some polyhedra, including those characterized in Lemma 7, the SLS computed by
FIND-SLS is minimum even when n is even. An open problem is to characterize all
polyhedra with an even number n of extreme vertices that have a minimum SLS of
size n/2 + 1.
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Another open problem is to design an efficient algorithm to compute a minimum
SLS for any polyhedron. For a polyhedron with an even number n of vertices and
known to have a minimum SLS of size n/2, the algorithm FIND-SLS may still yield
an SLS of size n/2 + 1, but a different choice of the two vertices in step 2.2 of the
while-loop can lead to a minimum SLS of size n/2 of the same polyhedron. For
example, in Figure 6, a convex polyhedron with eight extreme vertices is shown.
Removing (F, G) first will lead to an SLS of five line segments because the remaining
six vertices form a polyhedron with a vertex H having degree 5; this polyhedron,
by Theorem 3, has an SLS of four line segments. However, the remaining 6-vertex
polyhedron obtained by removing (E, F) first does not have any vertex of degree
5, so its minimum SLS has three line segments by Theorem 3. Thus, the minimum
SLS of P has four line segments.
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Fig. 5.
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Remove (F,G)

Remove (E,F)

Fig. 6.
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